—Chapter 13—

Radiation
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13-1 Liénard-Wiechert Potentials

RETARDED POTENTIAL

Maxwell's equations

L, 0B
VXE = TR Faraday's law
V.-E= L. Gauss's law
€o
VxE = Ho ]+ Ho€o 57 Ampére's law and displacement current
V-B=0
In static cases,
OF dB
_—= 0, _— =
at ot
Maxwell's equations becomes
VXE=0
V.-E= L. Gauss's law
€o
VxEB = Mof ----- Ampére's law
V-B=0

The uniqueness of the electric field E (77)
1. According to Helmholtz theorem:

rapidl
VXE=0andV - E—ﬁ w1thE(r—>oo)ap—y> 0
€o

we obtain

E= Vo
where

= _1_ _P_(i d3 /
dmey ) |7 — 7|

2. Solve the Poisson's equation with suitable boundary conditions
and ¢ is uniquely determined.
Vip = LN —Vo
€o
The uniqueness of the magnetic field B (7)
1. According to Helmholtz theorem:
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rapidl
VxB=uyand V - B =0 with B(r - 00) —3

we obtain
B =VxA(%)

where
8 ](T ) I
A(r) |r — | d3r

3) In electrodynamic cases,
Consider the electric field E (77, t):

VxE=—(—%(Vxﬁ)

<q aZ)
SVX\E+—|=
.ot
:E+6A— v
at qj
0A

Substituting into Gauss's law, we obtain
6147) p d " p
V. _V _— =_:V2 +— VA — —— e
< AGIFT: €o AEMNPT: ( ) €o (2)
Consider the magnetic fields B(7,t):
V-B=0>B=VxA(F)
Substituting into Ampére’s law, we obtain

UXVXA=pf+ 8< Y 6A>
fGI0) 024
=V (V . A) VZA [l()] ,Llofov ot Moeoﬁ

- 924 R e R
= VA—IJOEOE'E -V V'A+.UOEOE = —oJ -+ (b)

(4) Since E and B are physical quantities, we are free to impose extra

conditions on ¢ and A without changing E and B , such as,
A7) = A+ VA7 t)
- a -
(p’(T, t) =@ — 5;/1(7', t)
VERIFYING:
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=V x (A+72)
=VxXA+ w
=0
=VxA
Such changes in ¢ and A are called gauge transformation, and E and B
are gauge invariant.

(5) Equations (a) and (b) can be simplified by choosing different
conditions as
I, V-A=0- called the Coulomb gauge
We obtain

@__éum@g

R 924 dg R
<V2A — Ho€o 6_t7> -V <.U0€0 E) = —loJ -+ (b")

- d
2. V-A+ ppeq _(')% =0 called the Lorentz gauge

We obtain
d ¢ p
V(p+6t< Ho€ 06t> e
¢ p
= V2 — Ho€o 57 = B (a')
924 S

(6) We then can define an operator and obtain the symmetric form of the

differential equations for (p(?, t) and j(?, t).
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0,

" = V* — pypeg 52
a2 P
= ® €o
84 = —uof
where
o(#t) = Zmieg f p—(%t—) dr' and A(7,) = 22 f ](rT't)dT'

In electrodynamics, the potentials at the present time t depend upon
the charge and current densities at times < t. Thus, we should consider
the status of the source at some earlier time t,., called the retarded

time.
Retarded
position Particle
— trajectory

Present

o position

=Y

t=t——
r_C

@ and A are obtained as

> 1 p(F,' tT‘) re Ho jj)(?,r tr)

t) = dt’ and A(7,t) = — | =——=d1’
(p(r ) 4-7'[60_[ 7 toan (r ) 4m 7 '

Because the integrands are evaluated at the retarded time, these are

called retarded potentials.

EXAMPLES:
1. Verifying the retarded potential (p(?, t) satifies the
inhomogeneous equation 8%¢ = — p/é,.
ANSWER:
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SO

—_ — I d
(p 47'[60 f [ p t
We obtain

omgtef (Ao Lm0
o oo ()

oo Lo 1.
p=——pVr=——pr

1 1 1 > 1
P ) (2l (-607) F o
- [(— [—)-/r) —A + p4n63(4f‘)]> dr’

L | W —

Here

SO

4-7T€0
_10% p(#t)
TcZatz e
%9  p(#1t)

~2
=0 @:Vz@—ﬂofoatz— c
0

2. An infinite straight wire carries the current

0, fort<0
10 = {10, for £ > 0

Find the resulting electric and magnetic fields.
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ANSWER:
> Ho i(F,'tr Ho foo I(tr) A
A(s,t) =— | =——=dt’' = — —=d
(s,2) 41 f l ! A )_, 7 2
For t < s/c, the fields has not yet reached P, and the potential is
Zero.
For t > s/c, only the segment contributes

Izl < /(ct)? - 52

Thus, we obtain

J(ct)2—s2 I
/T(s,t) =@-2f —2 _dzz
- Jo Vs2 + z2
Uolo (ct +4/(ct)? — 52> .
= In VA
21 S
The electric and magnetic fields are
A Holoc A

Elst)= ot 21/ (ct)? — s2
B(s,t) =Vx 4
04, .
T ds
_ Uolpct ~
2ms[(ct)? — 52
Holo z

B Znsﬁt (s/ct)?

B. RETARDED POTENTIAL OF A MOVING POINT
CHARGE

(1) Consider a point charge moving on a specified trajectory
Retarded
position \ Particle
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Retarded
position Particle
trajectory
Present

q o— position

= J

X
The scalar potential of a point charge

= 1 p(F,’t ) 1
o00) =g, | 5

1 7t
= fp( )6(t’ —t,)dt'dt’
4‘7'[60 (al
The charge density for a point charge moving along the path w(t) is
given by

p(7,t) = q63(7 — w(t))
Thus, we have

. 1 q83 (7 —w(t") . o
(7 t) = 47_[60-[ ( — )8(1: —t,)dt'dt
= € J_) _1) 5t’_t+w dt’
dmey J |7 —w ()| c
Since
af| !
5(f(x)) = 6(x - xo) ™
we have
-1
, |7 —w ()] , , |7 —w ()]
8(t t— 5(t tr)a, t'—t+ -
Here
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a—at;<t’ t+|—r—_—MC/—(t—)l> at,((r—w(t))(r—W(t)))
—14- ((r—W(t))(r—W(t)))

(F-w

_1_1(7‘ w(t)) 6t’(W(t))

c |r—w(t)|
- -
v 7
=1-=.=
c 7
- ~
v
=1-
c
Thus, we obtain
-
v

Therefore, the retarded scalar potential for a moving point charge is

5 oA\ —1

- _ q 1 r_ _U"I" !

(p(r't)_4neof|F—W(t’)|6(t tr)<1 c ) a
o a1

= L_er_e;;<1 ——?—> , Where 7 = |r —-w (tr)|

N dregr(1— 0 - #/c)

(2) Moreover, since the current density is p¥, the retarded vector potential
is

— HOﬁ(tr)fp(F,’ tT) d,l_l
4 l

_Ho v(tr)
A r(1—-7-#/c)
(p(?, t) and AT(F, t) are the Liénard-Wiechert Potential for a moving
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point charge.

EXAMPLES:
1. Find the potentials of a point charge moving with constant
velocity.
ANSWER:
w(t) = vt

The retarded time is
t, = 1:—£=t—|i—_ﬁtr|
c c
= |7 =9t =c(t —¢,)

=12 =27 Bt, + v2it? = ¢?(¢? - 2tt, + t2)

(c2t—7-9) % \/(czt —7- 17)2 + (c%2 —v2)(r?2 — c%t?)

2 — 2
Suppose the charge is at rest at the origin (v = 0),

>t =

(czt) +/(c2t)? + (c2) (12 — c2t?) r
tT = 2 =t i —
c c
the retarded time should be
T
tr =t — Z

Thus, we obtain

(c2t—7-9) - \/(czt -7 17)2 + (c?2 —v2)(r? — c?t?)

t
r c2 — 2

Therefore, we can calculate

r(1-9-7/c)=c(t—t,) [1—

5 (7t

c c(t— tr)
= c(t—t;) == (F=t,)
= [(2t—5-7) ~ (2 ~v?)t,]

1
= E\[(Czt —7- 17)2 + (c?2 = v2)(r? — c?%t?)
The retarded potentials are

o(7t) =

qc

4n60J(c2t -7 1'7’)2 + (c2 = v2)(r?2 — c2t?)
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-

qcv

A7) =

_4_71: - - 2
(c2t—7-9)" + (¢ —v)(r? — c2t?)

2. Let R = # — ¥t be the vector from the present position of the

particle to the field point #, and 8 is the angle between R and .

q v

Find the scalar retarded potential for a point charge moving with
constant velocity.
ANSWER:

> C
o(F,1) = :

4n60J(c2t —7- 17)2 + (c? —v2)(r? — c?t?)

Here
(czt —7- 17)2 + (02 — vz)(rz - C2t2)
=c*t? - ZCZt(F . 17) + (17 . 17)2 +c%r? — c*t? —v%r? 4 cPv?t?
= —c?2(7 - vt) + (- 17)2 + c?r? —v2r? + c?v?t?
Since
R=7—1t
= R? =712 —2(7 - vt) + v3¢?
= 2(7-vt) =12 + v?t? — R?
we obtain
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(c2t—7-8)" + (¢ — v?)(r? — c2t?)
= —c2(r? + v22 — R?) + (7 3)° + c2r? — v2r? + c2v2t?
= (7-9)" — v2r2 + c2R?
= (R +9e)-5) - (B +5e) v+ c2R2
= (ﬁ-ﬁ)z +2(ﬁ-ﬁ)v2t+v4t2
— R?p? —z(ﬁ-ﬁ)vzt—v‘*tz + c?R?
= (R- ﬁ)z — R2y? 4 ¢?R?

= R?v? cos? 0 — R?v? + c?R?
= ¢?R? — R*v?(1 — cos?0)

V2
= c%R? (1 — —sin? 9)

c2
Hence
, qc
o7 t) =
2
47‘[60\/62R2 <1 - %sin2 6>
_ q
2

4meoR \/ (1 - Z—zsinz 9)

where

0 = cos™?! (}_?) . 17)
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13-2 The Fields of a Moving Point Charge

A. THE FIELDS OF A MOVING POINT CHARGE

(1) The fields of a point charge in arbitrary motion are
Retarded

position Particle
trajectory
Present

q o— position

&

= J

E=-V oA B=VxA4
= - qi_ s =V X
where ¢ and A are the Liénard-Wiechert potentials,
N q
o(7t) = dregr(1— v - #/c)
coN b V(L) _u(t) .
A(F 1) = 4 (1—9-+#/c) e o(71)
and
r=lF-w (&)
v =w(t,)
ty=t —|—r—_—MC/—(tr—)—| =>r=c(t—t)

(2) The gradient of (p(?, t) is

o=— - v<4~<1—5'4ﬁ)>
e (r(1-5-7/c)) ¢

q w—%v(ﬁ-f)

o (r(1-5-7/c))
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where
Vr = —cVt,
V@ -#A)= (7 -V)o+ (@ - V)F+7x(VxB)+0x(Vx7)
o) @ ® ®

0OS:
1
fx(Vxﬁ):Ev(ﬁ-f)—(f-v)ﬁ

1
ﬁx(fov):EV(ﬁ-f)—(ﬁV)f
® For the (# - V) term:
d d d
(/r“ V)v = (xa—-+ya—-+z >v(t )
dﬁ (’)tr dv ot, dv dt,
+y——""+2
dt dx dt, dy dt 9z

ot, ot ot,\ di
(x?x—+y 3y +Zg>d—tr
= (#-Vt,)d
@ For the (¥ - V)7 term:
5-V)F = (5- V) — (5 V)#(t,)

o o 0 0 0 R
(v-V)rz vx5;+vya—y-+vza (xx+yy+zz)

=X+ v,y + 0,2
=v
(5 V)W (t,) = (8- Vt,)D

=>@-V)F=0—-(4-Vt,)v
® For the 7 x (V X 17) term:

135145



x vy z
, g d 0
xd) =l 2 2
dx dy 0z
Ve v, U,
£ 9 2
oty @ at, d ot d
"~ |ox dt, dydt, 0z dt,
Vy vy, v,
b y 2
at, adt, at,
=|ox dy 0z
dvy dvy, dv,
dt, dt, dt,
= —a X Vt,
=7 X (VX V) =7 x(-axVt,) =—d(#-Vt,) + (7 - d)Ve,

BAC-CAB rule
@ For the ¥ X (V X 7°) term:
(VX7)=VX7F—VXW=15xVt,
=0
> PXx (VX 7)) =8 x (8 xVt,) =3(-Vt,) — vV,
BAC-CAB rule
Finally, collecting all terms, we obtain
V(@-#)= (7 -Vt )a+v— (V- Vt,)v
o @
—d(7 - Vt,) + (7 - @)V, + B(0 - Vt, ) — v2Ve,
©) @
=7+ (# - d)Vt, — v?Ve,
=i+ ((#-d) - v?) Ve,
The gradient of ¢(7,t) becomes

g~V —<(5+((#-d) - v?)ve,)

Vo = —

4meq (r(1=5-#/c))
q %‘*+%‘(cz —v2+7-d)Ve,

= 2
o (r(1-3-£/0))
Now, we shell find the gradient Vt,.
Since

135515 5



r2=(F-w)’

20V = 2(F —w) - (Vi —Vw) = 2(¥ = w) - (1 — Vt,.)
= 7(—cVt,) =7 - (1 - BVt,)
= (7 - V)V, — reVt, = 7

= Vtr S e u—
(#-9)—rc
we obtain
7
Vr = —Cco——5——

(- 9)—rc
Substituting into the electric field, we obtain

1,1 N a
¢ EU+E(CZ_UZ+¢'a)(4;.5§_¢C
dmey 217(4”0—1'7’-47)2
N S T S 7
g v (c ve+r a)(/r"c—ﬁ-f)
dmeg (/r"c—ﬁ-/i;’)z
_gqc (re—0-7#)o— (2 —vi+ 7 )7
meg (frc—ﬁ-/i;’)z

(3) The differentiate /T(?, t) with respect to t
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04 o (¥(t,)
Frimier <_2_'(P(T' t))
1 ov(t,) . L.\ 00(7 )
(T o)™
1 (ov(¢,) e, ., L, 00(7t)
72(‘&7“@?“’ 1)+ o(t) =5
a - -
1,0t qc 1 qc _,_ﬁ(”’c_”"’”)
=—|la—-
c2| 0t Ameg (rc—v-7) Ameg (rc—7- ,,;)2
d
= a Na(re—5.7) %2
4megc(rc — v - 7) ot
[ or b . . oF
B vt i A vy
Since
r=c(t—t)
we obtain
or 1 at,
-\ o
v _ dvot, 0t
at ot ot “or

0" 0w 0wt _0t,

9t ot ot ot ot
Thus,

YA
kg 1 2[&(“—17-4?—
ot dmegc(rc —v - #)

ot ot ot
— ol (1= = gz 27T
v<c ( 6t> s aat+v T

q [ 2—)
5| —c?v
dmegc(rc —v - #)

0
+((re—5-7#)i+(c? —v2+f-&)ﬁ)£]

Here
ot, dr 107

at dt ¢ c ot
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Since

7#o7=c2(t—t,)°

or at
=27 o= 2c¢2(t—t,) (1—6—;
Since
a7 ow _ owat, 0t
ot ot ot ot ot
L L0t ot
> —7 v—a?zxrn:(l—g)
at, rc
ot rc—7-v
Thus, we obtain
94 q -
- -

4megc(rc—v - 4;)2

+((re=5-#)a+ (2 —v2 +47-d)p)

qc

= [—ﬁ(rc—ﬁ-/f’)

drreg(rc— - 47"')3

+((4~c—ﬁ-4;)c'i+(cz—v2+47-

rc
T S5 -
rc—1r-v

)2l

- 1 [(rc—ﬁ-f“) (—a+§a)

dmeg(rc—v- 47)3

+€—(cz—v2+f~&)ﬁ]

(4) We then obtain the electric field as
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_qc (re—v-7)o— (2 —v2++7-a)F
dmeg (rc—ﬁ-ﬁ)s

- 1 3[(w—a.f)(—ﬁ+fa)
dreg(rc — 7 - 7) ¢

+€(c2—v2+f-&)17]

_ ac [ 2 _ 2 (-» ”’»)
= c2—v?)(F——3
47160(4”0—17-4;’)3( ) ¢

r L oNT
+ (7 (r——v)—(wc—v-ﬂr —a]
c c

) 4n60(4'"cq ~ 7Y’ [(Cz - -59)
+(7-Z5)@-7) w(w(w-%a))]

BAC-CAB rule

- ac [(c —UZ)( )+43x(42—4£13)x&]

47‘[60 (frc —U- /r)

(5) The curl of /T(?, t) is
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VXA = Vx—(—)— o(7 1)

=EE((pV><v—17><V(p)

1 q 7

e dregr(1— v - #/c) ( (v 4f'c>

qgc (rce—v-#)o—(c* —v?+7-d)F

meg (4/“c—13’-47“)3

_1 q

C4neg(rc—7-7)

+ (2 =vi+7-a)(¥x7)]

_ ! 1 =7 X [(¢? —v?)v
Caneg(rc—7v-7)
+3(#-d) + (rc—v-7)d|

-

=[(rc—v-7)(dx#)

Since

PXE = 1 7 X (cz—v2)<f—£ﬁ>
dreg(rc— 7 - 7) ¢

+(f—€-ﬁ)(%-d —&<4?-(42—€17)>]

=— qc 34f°x[(c2—v2)£ﬁ
drceg(rc— 7 - 7) ¢

+%6(4?-&) +&<4?-<47~—€17>>]

q - 2 2\ 2
= — r X |\cc—v°)v
drceg(rc—v- 47")3 [( )
+9(7-d) + (rc—7-7)d|
=cUxA
Thus, we obtain the magnetic field as

- - 1 -
B(7,t) =V x A(#t) = o7 x E(7t)
= The magnetic field of a point charge is always perpendicular to the

electric field, and to the vector from the retarded point.

EXAMPLES:
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1.

Find the electric and magnetic fields of a point charge moving
with constant velocity.
ANSWER:
a=0
E ac 5 [(62 —v?) (47 - fﬁ)]
dreg(rc— 7 - 7) ¢
Using w = ¥t, we obtian

AN N PR _C(t—tr)_)

(f_?v)_[@ s1,) - Lt ]
=7 -t

(re—v-7)=c?(t—t,)—v- (- vt,)
=(c?t—v-7) = (2 —v?)t,

> o> 2
=\/(czt—r-v) + (c? —v?)(r? — c?t?)
Let R = # — ¥ be the vector from the present position of the

particle to the field point 7, and 6 is the angle between R and ¥.

0
q v
We obtain

—

vZ
\/(Czt — 7 17)2 + (c?2 =v2)(r? —c?t?) = \/CZRZ (1 - ﬁsin2 6)

The electric field is
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E = . (Cz - UZ)R)

3/2
2
4me, <02R2 (1 - Z—zsinz 9))

q c(c? —v?)

=]

SN—
w
~
N

- 4me 2
c3R3 <1 — C—Zsin2 6
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'-e

e

Lines of B circle around the charge.

2. Draw the electric fields for an abrupt, momentary acceleration.
ANSWER:

A point electric charge q, initially at rest t, = 0.

The charge undergoes an abrupt acceleration lasting At = t; —
to = t.

Then, the charge continuous to move to the left with constant

velocity v, at time t,.
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13-3 Power Radiated by a Point Charge

RADIATION
The fields of a point charge in arbitrary motion
- qc ) N T . I o N
E= 3[(0 —v)(w——v)+4~><(4ﬂ——v)xa]
4reg(rc —v - 7) ¢ ¢
- 1 -
B(7,t) =7 x E(7,t)
The Poynting vector is
I 1 1> - 1 - -
S=—(ExXB)=—|EX|(#XE)|=—]|E?*?—E(#E
o (ExB) = —[Ex (7 xE)| = —[e*#~E (7 -E)]

BAC-CAB rule

Imagine a huge sphere of radius 7, centered at the position of the
charge at retarded time t,, i.e., the time interval for the fields to reach
the sphere,

-
t—t,=—
C

w(t,)

The total power passing through the surface is the integral of the
Poynting vector:

. o, 1 S .
P(r,t)=9¢S-da =——jE(E xB) -da
Ho
Thus, the power is carried away out to infinity and never comes back,

. v
Proa(tr) = lim P (4/', tr + ?)

such a process called radiation.
Since the area of the sphere is 4772, so any term in S that goes like

1/7? will yield a finite answer, but terms like 1/#3 or 1/7* will

contribute nothing in the limit #~ = oo. For this reason, E and B go like
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1/ at large distance from the source, constructing from them the
1/7? term in S. Thus, we find that

Cc r r
= d (2= v?) (7= Z5) + 7 x (7 - Z5) x4
7~ C C

~1/73
the second term (depending on the acceleration) falls of as 1/# and is

therefore dominant at large distance.
o qc . I AR N
Ea = 3[4”)((4”——17))(61]
dreg(rc— 7 - 7) ¢
= 1 - Ag[ﬁx<4ﬁ—§>x&]
U- fr>

4meyc?r (1 ——
c

— ~

R
Now, E,,q is perpendicular to 7, so the second term in S vanishes, i.e.,

Ss =27 ~ £ (- E)|

_t(_a Y
T poc \Ameyc2r (1 ~ 17_4;>6

= When charges accelerate, their fields are radiated.

(4) If the charge is instantaneously at rest (¥ = 0) or v « ¢, we obtain the
Poynting vector
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N Hoq? f
rad = 16_0112_' [# x 7 x a] )
I’loq ~Af A = = > \a p SN N
= 15'[_(: [#(#-d) - a] —, (BAC-CAB rule)
Hoq® 1/ .
_16_0”_6.[( a) +a?—2(7- a)]

#oq A o
— - (@]

Since
~ 2 .
a® — (4/" . &) = az(l — cos? 9) = a?sin% 0
P
a2 cos? 6
we obtain
. Uoq?a®sin? @

The power 18 radiated in a donut about the direction of instantaneous acceleration.

a

The total power radiated is

P = fgrad . dC_l)

2.2 2
Hogq-a sin“ 6 i
=Tt f 2 72sin @ dOd¢
2 2
Hogq~a .
= T6?2—C . Sln3 0do -2n
=4/3
a
,u_q__ --- Larmor formula
énc
EXAMPLES:

1. In the Rutherfold model of hydrogen atom, the electron is
circulating around the nucleus, and continuously emit energy and
spirally fail on the nucleus. Find the energy loss for an electron in
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a circular motion per revolution.
Radiation

‘-' y :...‘.-

zq
_ ’ Classical Orbit
ANSWER:
For a circular motion, we have
2
v
a=—
r

Using Larmor formula, we obtain
Lo’ <v2>2 ~ poev*

p=""—] =
6mc \ r 6mcr?
Energy loss for an electron in a circular motion per revolution is
2nr ey
AE =—P =—
v 3€or

B. ANGULAR POWER DISTRIBUTION

(1) The angular distribution of the radiated power at observer's current
time t is given by
dP(t) = S,q-dd = S..q - 72dO7
dP(t) ﬁ

g = (S )

(2) The angular distribution of the radiated power as measured with
respect to the charge's retarded time t’ is given by

dP(t,) dP(t)dt ., N ,dt

6 = o = e )t
Since

at, rc

ot rc—+-v
we obtain
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EXAMPLES:
1. Suppose ¥ and d are instantaneously collinear (at time t,.), as, for
example, in straight-line motion. Find the angular distribution of
the radiation and the total power emitted.
ANSWER:
In this case, ¥ X a = 0, so
dP(t,)  poq?® [# x (#) x @]’
do  1ém?c ( 5

<N
Y

1-—
c

 oq? [P(7-d)—d]

16m2c ( 5.4;>5
1 —
c

wog? [(7-8) +a? —2(7 - d)’|

~ 16m2c S \°
(-5

) (BAC-CAB rule)

Cc

~ \2

_ Moqz [az—(’l’-a)]
"~ 16m2c (1_{;_4;;5

c
If we let the z-axis point along v, then
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dP(t;) uoq®a® [1—cos?6]  poq*a® sin? 6
a0 16m*e (1 —%cos 9)5 16m*e (1 —%cos 9)5

For very large v, the distribution becomes
xh

Although there is still no radiation in precisely the forward
direction, most of it is concentrated within an increasingly narrow
cone about the forward direction.

The total power emitted is

dP(t,) Uoqla? sin? 6 _
= 70 dQ = TonZe f ( > =sin6 dod¢
1-— - cos 0
Since
T sin?@ _ 1 1—cos?6
J. ———————sinfdf = f ﬁd(cos )
0 (1——c059 _1(1_EC039)
41
"~ 3(1—v?/c?)3
4
_Z. 6
3y
we obtain
Hoq’a® 4 toq?a’y®
=————._y .271':—
16m%¢c 3 6mc

. For v close to c, find the angle 8,,,, and the intensity of the
radiation in this maximal direction.

ANSWER:
The maximum angle occurs at
d sin? 6
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2sinfcosd  sin*6 5Ysin6
= — ¢ =0

5 6
(1 —%cos@) (1 —%cos&)
—2+4+60v2%/c? —-1+4+.1+15v2%/c?
. 6v/c - 3v/c
Since 6, = 90 when v = 0, we pick up the plus sign.
J1+15v2/c2 -1

3v/c

= cosf =

emax = Cos -

For v =c, let v/c =1 — €, and expand to the first order in €:

3u/c 1 )[w/1+15(1—e)2—1]

§(1+6)[\/1+15(1—26)—1]
1 LA
~sa+oli(i-3ge)-]

=(Q1 1 >
= ( +6)( _ZE>
5

4
1
= Gpax = Cos™1( 1 o

Thus, we obtain

cos @ = =1——E

max IIl ax

\/’ \/;—v/c

The intensity of the radiation in this maximal direction
dP(t;) uoq®a®  sin® B,
dQ  16m2c v 5
(1 —;¢os Gmax)

Since

. 2 E
Sin® Oy = 5
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v 1
1—E-c059maxz1—(1—6)<1—Ze>ze+ze=ze

we obtain
dP(t;) uoq®a® €/2  poqa? (4)5 1

dQ  16m2%c (5¢/4)°  16m%c \5) 2¢*
Since
, 1 1 1
y = =~ ~ —
1—-v2/c2 1—-(1—-¢€)% 2e
we obtain
dP(t 22 (4\° 1 22
( r) — Uoq = _(2 2)4’ — Uoq x 262]/8
daQ 16m2%¢c \5/) 2 16m2c
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13-4 Radiation from an Arbitrary Source

A. RADIATION FROM AN ARBITRARY SOURCE

(1) The retarded scalar potential of an arbitrary configuration of charge is
zh

drt

<y

> — 1 p(F,’ tr) ’
(p(r, t) " 4me, f r dr
where
ty=t——

=l e I R T A
Write 1/# in the form of a power series with Legendre polynomials:

1 1w /)" 1 7.7
—=—Z — | Py(cos0) =—+——+
s r r T r

n=0
We obtain

Let

A - 2 = 2
., (o 77 1., 77
< b(0) + (7 t0) () 307 00) ()
The retarded scalar potential becomes
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o(71) = U’)(T 't0) g +fp( o) (5 ) e

+fp(rr—t°)<r CT >d +
~ [ P(tO) 7'5(%)]

where p is the dipole moment.

(2) The retarded vector potential of an arbitrary configuration of current is

ff(?,t)———f](r Lo

Ko 2 f & to)dt

Since for a conﬁguratlon of charges and currents confined within a

volume V, the integral of f is the time derivative of the dipole moment.

f]dr———

the vector potential becomes

1(7 — Ho 1 dp-)(tO) Ho p;(to)
A(T, t) - __t__ - =

The time derivative of the dipole moment,

dp _
P pr dt = f —7dr
Using the contmulty equation:
. dp
Vi itg =
We obtain

-

‘;_?;:_L(v.f)m
Since

V-(rf)zr(V-f)+f-(Vr)=r(V-f)+f-7“‘
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we obtain
jr(v-f)d‘r=fV-(rf)dr—ff'f”dr=frf-d&—f]rdr

/| v s

Since J is entirely inside V, it is zero on the surface §. Therefore, we

have

jr(V-f)dT=—f]rdrzL(V-f)?drz—ffdr

Thus, we obtain

(3) Therefore, the fields are

E=-v o4
o (p B ?t- . ..
=__1_v[9_+f-ﬁ(to)+f-ﬁ(to) 1o B(to)
4dme, Lr r? rc it T
B ORE OMREE. ORE.C
_47T60 -r-2 r3 rz Vt0+ rzc rc Vto
_ o p(to)
T r

= »_ Ho 5 Ho 5
= X = — X = — X
B=VxA=,—V p(to) 2 Vto p(to)
Only the terms involving the acceleration have the contribution. Thus,

we obtain
oot 7o), ropt)
o 4mey  rC O 4 r
B = v x 5(to)
rad Ar 0 P\ Lo
Since
r r
Vto :V<t——) = — =
c c

the radiation fields are
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rad = 4-7'[6062 r im T

ZE; [r p(to)r — p(to)]

= (BAC-CAB rule)

- Mo rXp(tO) 1

5= toxplt) 1. ;
rad Amc r

ﬁ

(4) The Poynting vector is

- 1,5 o 1 15 - 1 . o
§=—(ExB)=—|Ex (7 xE)|=—[p?r - E(7-E)|
Ho HoCo 72 HoC
. BAC-CAB rule R
Since E.,q is perpendicular to 7, so the second term in §,,4 vanishes.
Thus, we obtain

Siq = —E2% 7
é rad
UoC

=y,

u A 3 3 2 f' e
:EES—C- (r p(to)) p(to)] ol (BAC-CAB rule)

- - 6_!::_C ( to)) _Z(f-ﬁ(to))2+(ﬁ(to))2]riz
16!2)5 (p(to)) (f'ﬁ(to))z]%

The radiated power is
c - IuO .. 2 A 3 2 f' -
Pua(to) = jgsrad da= m% (8(t)) = (7B(t0)) | 5 -da

(5) If we use spherical coordinates, with the z-axis in the direction of
ﬁ(to), we have

#-p(to) = p(to) cos 6
The radiation fields are

Y
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M

s B Pxp(t) 1. o
Braa = 41c r B xE

The Poynting vector is
- N s 2 r
Srad EET_C (p( 0)) (7" ' P(to)) )
7
EET_C (p( 0)) [1 - COS2 9] 7"_2

f”
= 16” " (p(to)) sin? —2
The total power radiated is

Pulte) = 2% (5(0))” [ 22
6nc(p( 0))

DIPOLE RADIATION

ﬁ

r?sin @ dod¢

The oscillating electric dipole
B(t) =pocos(w) 2, (po = qd)
p(t) = —wp, sin(wt) 2
p(t) = —w?p, cos(wt) 2

The electric and magnetic fields are

E’rad _ f_::[ [r x (7: x ﬁ)] _ ﬂopow (wt )<sm9

- 1 5 sin@
Biaq = p -7 XE = _@P_o_ cos(a)to) < )

Electric field lines from the electrlc dipole:
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Electric field E
L3545 I 4 2 4 A

A i
o= @ Q00

(a

4 v 5

{(}le

A

(c) ()

,'C

one

The energy radiated by an oscillating electric dipole is determined by
the Poynting vector:

2 Ho (.. 2 (sin® 0
Srad = 16n2é(p(t°)) < 72 )r
U sin? 9\ _
= 161:20- (—w?po cos(wto))z ( )r

r2
_ Hopiw* (sin2 0

oo\ T cos?(wty) #

The intensity is obtained by averaging (in time) over a complete cycle:

. 2w* (sin? 0\ (T 2w* (sin? 0
<Srad> - HoPo (———) f cos? wty dty # = Fobo < )f
0

16m2c \ 1?2 32m%c \ r?
=1/2
The intensity profile takes the form of a donut.
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The total power radiated is

2 4 a2
Hopow™ (sin“6 ,
P.a(to) = 321rzc_[ - r2sin6 dod¢
_ Hopow® 4
32m%c 3
HoPo®~
127mc

(2) The oscillating magnetic dipole
Suppose that we have a wire loop of radius b, around which we derive
an alternating current:
1(t) = I cos(wt)

dl y
The loop is uncharged, so the scalar potential is zero. The retarded

vector potential is
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R 1(t) -,
A7, t) = L‘ﬂf_(@_d,f

41 il

v =12+ b2 —2rbcosy

7=rsinfxX+rcosf2

b=bcos¢'%+bsind'§

= rbcosyp =7-b =rbsin6 cos ¢’
we obtain

. b
v =r2+b2—2rbsinfcos¢’ ~r 1—;sm9cos¢’
1 1 b
—~—(14+—sinfcos¢’
T r

s
~
1(t) =1(e-%)
1e-C+ i 6 '
~ . Csm cos ¢
b
=] <t0 + E‘sinQ cos (,‘b’)
. b
~1(ty) + I(to);sine cos ¢’
dl' = bdg'$ = b(~sin¢’ % + cos ¢’ 9)d¢’

S 1 b ; b
AR 6) = g%f;(1 + ;sinH cos ¢’> (I(to) + I(to)zsine cos ¢’>
-b(—sing’ 2 + cos ¢’ 9)d¢’
ob (%" b , b_ ,
zET;fO I(t0)+1(t0)zsm9cos¢ +I(t0);smecos¢

-(—sing’ 2 + cos ¢’ 9)d¢’
Since

21 2m 2
f sing’d¢' = f cos¢p'dep' = f sing’cos¢p’'dep’' =0
0 0 0

we obtain
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N b (/. b b
A(7t) = Ho? <I(t0) —sinf cos? ¢’ +1(ty) ;sin 6 cos? qb’) do'y

anr J,
47'cr I(to) 51n9+1(t0)—sm9] ny

b? I I
= Ho sinH[ (tzo) + (to) hY
r rc

4

Only E and B involving the acceleration have the contribution. Thus,

we have

" 2 I
A(?-,t)=“°4b sin (:Lf’)y

In general § — ¢
6/1) Mobz I(to)

E = —— =
_)rad Qt 4
B=VXxXA
11 . 1.
rzsinQr rsin@ rd)
= i} 0 0
ar 26 F
0 0 rsin9A¢

~

1 9 10
r—saga—g-(smeAd))r—;E(TAcp)@

b? 1 I\ .
,uo [———— (2sin 6 cos @) ——sin 8 ( ) 9]
rsind T c
o uobz .sinf .
Bmd 4-C2 r 9

The Poynting vector is

§rad = ‘[_j; (Erad X Erad)

Upc \ 4c?  r
Ho Zsin 9
"9 b2 _—
16¢3 ( r2 "

The intensity is
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The total power radiated is

P = f <§rad> . dC_i

pob*12w* [ sin?6
~ 323 f

uob*12w* 4
=3

r?sin 6 dod¢

r2
21

Let
mo == T[bzlo

EXAMPLES:

1. In the Rutherfold model of hydrogen atom, the electron is
circulating around the nucleus. Thus, the atom can be seen as a
rotating electric dipole:

7(t) = ro(cos wt £ + sinwt 9)
and

p(t) = —er (1)
Find the time for the radius of the electron to shrink from a, to
zZero.
ANSWER:
According to the Larmor formula,

Hoe’a’

6mc
If the radius of the electron orbit is r, then its energy is
2 2
e

E =-mv®— = -
2 mv 4megr 8megr

e
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When the electron radiates and loses energy, the radius shrinks,

Thus,
Pdt = |dE|
poe?a? ~ 2
61C "~ 8meyr?
it 3c 3¢3
= = — r
4py€eqa®r? 4a%r?
Since
a—wzr—vz— e’ a’r? = e ) _1
B r  Ameymr? ~ \4me,) m?r2
this leads to,
3c3 1 p 3¢3 2 ,
= r=— redr = —
4 1.2\ 1 4ctr? 4er?
(15e;)
where
2
¢ 2q,, a~1/137
= —_— =Qa , =
¢ 4meymc? 0
The time for the radius of the electron to shrink from a, to zero
3 0
T= ————Z-J. r2dr
decatag Jq,
3 a3
4ca*al 3
 4cat

~131x107 s
That is, according to classical theory, the Rutherford atom should
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collapse immediately because of the radiation energy loss.
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